HBase经过七年发展,终于在今年2月底,发布了 1.0.0 版本。这个版本提供了一些让人激动的功能,并且,在不牺牲稳定性的前提下,引入了新的API。虽然 1.0.0 兼容旧版本的 API,不过还是应该尽早地来熟悉下新版API。并且了解下如何与当下正红的 Spark 结合,进行数据的写入与读取。鉴于国内外有关 HBase 1.0.0 新 API 的资料甚少,故作此文。
本文将分两部分介绍,第一部分讲解使用 HBase 新版 API 进行 CRUD 基本操作;第二部分讲解如何将 Spark 内的 RDDs 写入 HBase 的表中,反之,HBase 中的表又是如何以 RDDs 形式加载进 Spark 内的。
环境配置
为了避免版本不一致带来不必要的麻烦,API 和 HBase环境都是 1.0.0 版本。HBase 为单机模式,分布式模式的使用方法类似,只需要修改HBaseConfiguration
的配置即可。
开发环境中使用 SBT 加载依赖项
name := "SparkLearn" |
HBase 的 CRUD 操作
新版 API 中加入了 Connection
,HAdmin
成了Admin
,HTable
成了Table
,而Admin
和Table
只能通过Connection
获得。Connection
的创建是个重量级的操作,由于Connection
是线程安全的,所以推荐使用单例,其工厂方法需要一个HBaseConfiguration
。
val conf = HBaseConfiguration.create() |
创建表
使用Admin
创建和删除表
val userTable = TableName.valueOf("user") |
插入、查询、扫描、删除操作
HBase 上的操作都需要先创建一个操作对象Put
,Get
,Delete
等,然后调用Table
上的相对应的方法
try{ |
Spark 操作 HBase
写入 HBase
首先要向 HBase 写入数据,我们需要用到PairRDDFunctions.saveAsHadoopDataset
。因为 HBase 不是一个文件系统,所以saveAsHadoopFile
方法没用。
def saveAsHadoopDataset(conf: JobConf): Unit
Output the RDD to any Hadoop-supported storage system, using a Hadoop JobConf object for that storage system
这个方法需要一个 JobConf 作为参数,类似于一个配置项,主要需要指定输出的格式和输出的表名。
Step 1:我们需要先创建一个 JobConf。
//定义 HBase 的配置 |
Step 2: RDD 到表模式的映射
在 HBase 中的表 schema 一般是这样的:
row cf:col_1 cf:col_2
而在Spark中,我们操作的是RDD元组,比如(1,"lilei",14)
, (2,"hanmei",18)
。我们需要将 RDD[(uid:Int, name:String, age:Int)]
转换成 RDD[(ImmutableBytesWritable, Put)]
。所以,我们定义一个 convert 函数做这个转换工作
def convert(triple: (Int, String, Int)) = { |
Step 3: 读取RDD并转换
//read RDD data from somewhere and convert |
Step 4: 使用saveAsHadoopDataset
方法写入HBase
localData.saveAsHadoopDataset(jobConf) |
读取 HBase
Spark读取HBase,我们主要使用SparkContext
提供的newAPIHadoopRDD
API将表的内容以 RDDs 的形式加载到 Spark 中。
val conf = HBaseConfiguration.create() |
附录
更完整的代码已上传到 Gist 。
- HBaseNewAPI.scala HBase 的 CRUD 操作
- SparkOnHBase.scala Spark 操作 HBase